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The dynamic contact problem for a half-plane reinforced on its boundary by a 
finite elastic strip is considered. The solution of the problem reduces to solving 

an integral equation of the first kind, and then an infinite system of linear equa- 
tions by using Chebyshev polynomials. It is proved that this infinite system of 

equations is quasi-completely regular. Moreover, a simple analytical expression, 

completely admissible for practical applications and differing by an arbitrarily 

small amount from the exact expression, is obtained for the kernel of the integral 
equation. In this case, for definite values of some physical parameter, the com- 
plete regularity of the appropriate infinite system of equations is proved in addi- 
tion to the quasi-complete regularity and numerical results are obtained for the 
law of variation of the amplitude of the tangential contact stresses under the strip. 

The problem under consideration is related to problems of load transfer from 
stringers to elastic solids which are important for engineering practice. The case 
of an infinite or semi-infinite strip has been examined earlier Cl]. 

1, Formul&tfon of the problem, Derivation of the governing 
equation. Let a semi-infinite plane be reinforced by an elastic strip of constant suf- 
ficiently small thickness h welded to a finite 

Fig. 1 

segment of its boundary [-a, a] . The 
purpose of this paper is to determine the 
contact stress distribution law along the 
segment connecting the elastic strip to the 
half-plane when a concentrated horizontal 
harmonic forcep sin W# (Fig. 1) is applied 
to one of the strip ends. For simplicity in 
the computations, we shall henceforth take 
this force as Pe-i-f (it is hence evidently 
necessary to take the imaginary part of 
the solution with the reverse sign). As in 
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[2, 31, let us assume that the strip bending stiffness is negligibly small because of the 
smallness of the thickness h , and hence, the normal strip pressure on the half-plane can 

be neglected (model of a one-dimensional elastic strip continuum). This permits con- 
sidering only tangential contact stresses to act under the strip, i.e. the strip is in a uni- 

axial state of stress. 
The strip vibrations equation under the mentioned assumptions is [l] 

a%#) (2, t) p1 ad'qX,t) 1 
-- 

8x2 El ata = - Blh -z(x,t), --a<z<a 

Here ~(1) (5, t) is the horizontal displacement of points of the strip, pr is the density 

of the strip material, z (5, t) is the unknown contact stress at the point 2 at the instant 
t acting on the strip along the line connecting it to the half-plane, and E, is the strip 
elastic modulus. 

Considering steady-state strip vibrations, let us assume 

U(l) (J, t) = u* (2) e-i@‘, z (5, t) = z* (z) e-ia’ 

Furthermore, taking into account the value of the axial stress at the ends of the strip, we 
obtain a boundary value problem to determine the amplitude of the displacements,whose 
solution is given by the formula 

1 

UP) (as) = - & 5 G (kax, km) z, (as) ds + -& coskkfi&;a I) (1.1) 
-1 

- ak ,i’, 2ka cm [ku (J: - l)] cos [ku (s + 1)], x <’ 
G (km, km) = -l<x,s<l 

- & ,;n 2ka cos [ka (S - I)] COS [ka (x + l)], X>S 

after the transition has been made from the segment f-o,, a] to the segment [ -1, I] 
with which we shall henceforth deal. Here aG (kux, kus) is the Green’s function for 
the same problem but with zero boundary conditions [4]. On the other hand, the ampli- 

tude of the horizontal displacements of the boundary points of the elastic half-planedue 
to the horizontal harmonic force of amplitude Z, (z) is given by the formula [I] 

u’;“’ (a4 = $ 5 K (k,a 1 x - s 1) z, (us) ds, -- k, = o J” ps / p2 (1.2) 
-1 

K (z) = & 1 k (s) e-Ws, k(s) := 
JL/s.I--l 

-1 
(2s" - 1)y - /is" JLQP _ 1)(&4_ E?) 

E= 
lf 

Here a,, cl2 are Lame’ parameters, pa is the density, and Y is the Poisson’s ratio of the 
half-plane material. 

Let us note that the last integral should be understood in the Cauchy principal value 
sense since the integrand has a first order pole on the real axis [l, 51. Furthermore, the 
condition u*(r) (a.~) = u.+(2) (a~), -1 6~ < 1 should be satisfied on the segment 
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connecting the strip to the half-plane, and which in combination with (1.1) and (1.2) 
reduces the problem of determining the amplitude of the tangential contact stresses to 

solving an integral equation of the first kind 

1 

[K (k,” IX - $1) + h*G (k*s, k*s)l cp (s) ds :.= ‘OS “* (’ - I)’ k-* sin 2k* (1.3) 

-1 

z:” (as) a 
Q ($1 = h*f-L 1 A*=%, k2* = ak,, k* =1 ak 

To investigate the structure of the function K (z) , let us note that its Fourier transform 

k (s) has the expansion 

X:(*s)= - i L-++&$$i + 
2 (1 - E2) I s 1 

ER - 2 (aa + E1 + 8’) - :i i 
:%2 (i - E2) 

s’lsl -I- ht4 

in the neighborhood of the infinitely distant point. The function k, (s) at the zero point 

evidently has a nonintegrable singularity. Because of known formulas [6], the function 

I<, (s) : $$ kt (r) d-~ 

is however integrable at this same point. Because k, (s) - const / s 1 s 1 as [ s 1 + 
00, then k, (s) will be integrable on the whole real axis. Moreover, the formula 

F (k, (s)) = iL+F-’ fx-* (s)) 

holds, where F is the Fourier transform in the sense of the theory of generalized func- 

tions, and F-’ is the inverse transform [6, 73. Taking this last formula into account,we 
obtain the following representation (C is still an unknown, constant): 

(1.4) 

It should be noted that another representation of the function h (h~*z) of the same 
structure but containing any finite number of terms in even powers of the argument kz*x 

can be obtained completely analogously in place of the representation (1.4). Proceed- 
ing to determine the value of the constant C, let us note that the function k’ (k,*, J) 

can also be represented as (ci (&*z) is the cosine integral) 
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There follows from these two representations of the function K (k,*s) that the constant 
C not yet known is expressed by the formula 

C = - 2 (1 - Et) lim 
X40 II 

K j&*x) - ,2 t1 1 e2) n: In 1 k,*IIJ = (1.5) 

-;1v- I 5 ( 2(1 - E2) l k s)&_ 2(1 0X ;@) 
11 

k(s) +,2(*:a%) + 
0 1 

Therefore, on the basis of (1.4) we have the following representation: 

K @2*X) = - 2 (1 _! ez) f In & + R (k,*x) 

where the function R (k,*x) possesses the property that its second derivative is square 

summable on the segment c-1, 11. The function K (&*x) in this formula is represen- 
ted as the sum of its principal and regular parts. Furthermore we have (0 (x) is the Hea- 
viside function) 

ac (k*x, k*s) 
8X 

= G" (k”x, k*s) + 8 (x - s) (1.6) 

1 

G* (k*x, k*s) = 
y sin [k* (x - I)] cos lk* (S + i)], 
‘lnfk 

x&s 

7~0s [k* (s - I)] sin [k* (J: + i)] - 1, sm 2k* 
x>s 

This last function is continuous in the square - 1 < x, s ,,< 1 , and has continuous 

partial derivatives with respect to the variables x and s in this same square. Taking 
account of (1.4) and (1.6) and differentiating both sides of (1.3) we obtain the follow- 
ing singular integral equation of the first kind in the unknown function Q (s) : 

1 (1.7) 

i St - It 1 - s-x f 
aR 

(kz* - s I) - 2 (1 - 8%) 8X 1 z - 2 (1 - 9) h*G* (k*x, k*s) - 

-1 

2 (1 - 63) h*e (x - s)} cp (s) as = 2 (1 - ES) sin yn(;,l 1)1 

The solution of the dynamic contact problem for a half-plane reinforced on a finite 
part of its boundary by a finite strip of small thickness therefore reduces to solving a 
singular integral equation. The kernel og this equation consists of two members, the 
first cf which is a Cauchy kernel, and the other is a square summable function in the 
square -I<& s<1. 

2. Reduction of (1.7) to an infinite 8y8tem of linear equBtion8, 
Following [8], let us seek the solution of (1.7) in the form 

Q(s) = Vl-f- (a0 + jra,T,(s)) , T,(x) = ~~~(narwosx), - i <:y: 

where T, (2) are Chebyshev polynomials of the first kind. Substituting Q (z) from 

(2.1) into (1.7) and using the relationship [9] 
1 

1 sin (n arccos z) 

x s 

Tn (4 ds 

_, (S-CC) VI - S2 
= UT%-1 (4, u*-1 (4 = sin (arcos x) 

n=l,2,3,...: -l<xdi 
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where u,,_l (x) are Chebyshev polynomials of the second kind, we obtain the following 
infinite system of linear equations in the coefficients {a,,}=,: by a known method : 

Here 
2m [ 1 + (- I)“+] 

K = [n2 - (m - I)‘] InO - (m $- 1)“) ’ n#m-1, n+m-t1 
mm 

0, n=m-1, n=m+l 

R 
1, t R1(x,s)Tn(s) - 

m,n = \I _-l_-l v= 
as 1/l - Ic*u,+ (s) da, nf, n = I,?, . _ 

Rl(x, s) = - Z(l - .s2) aR(k2*a;- “I - 2 (1 - e2)k*G* (k*s, k*s) 

(pm =~(l-~2)h*b,-~R,,,,o 

b,=$, b _ 2m[f-(-1)ml m=l, m tm2_t1)2 - 7 m#l 

I 

fn3 = 

4(1 -e”) ’ 
n sin 2k* s 

sin [k* (J: - I>] 61 - 52Um_1 (x) a~, nL = 1.2,. . . 

-1 

3, Invertigotion of the infinite :y#tem (2, 2). Aninvestigation of 
the infinite system (2.2) in the case of just one kernel Km,,, is contained in [8]. Addi- 

tion of the kernel Rm,n to this kernel does not destroy the regularity of the original 
infinite system in the sense of its quasi-complete regularity. Indeed, on the basis of the 

above mentioned properties of the function R, (2, S) we can write 

R 
1 

m,n = h h ?ll,*, m,n=1,2,... 

11 

’ h m,T% = SI 

-- 
Ru (x, s) -f/1 - 9 VI - x3 I!J,_~ (s) u,,,_~ (2) dx ds, Ru (x, s) = 

~RI (x, s) 
C3.S 

-1-l 
Then 

STlI = i 1 R,,n I = 2 f I /zm+ I, m=l,2,... 
*=I n=1 

Now, noting that the coefficients {h,, +,gz, n=l are square summable Fourier coeffici- 

ents in the square - 1 =$ I, s < 1 of the function RO (z, s) in the complete orthogonal 

system of functions {U,_, (s) U,_., WE, n=l, we can assert on the basis of the Bessel in- 

equality that 

i i I h,,?l I3 < 00 
tr=1 m =I 

then the series 
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also converges by the theorem known from analysis [lo]. Therefore. at least 

cm=o +- ( ) for NL --f co 
(3.1) 

where S is a small positive number. Furthermore 

Taking (3.1) into account we have 

which indeed proves the assertion expressed above concerning the quasi-complete regu- 

larity of the infinite system. 

Now, let us note that to determine a0 , we should substitute n: = - 1 in the expression 
obtained after substituting (2.1) into (1.7). We obtain 

m 

2 d,a, = aoD - 2 (1 - ~2) (3.2) 

Here 
4 

dlL = n(-I)“+ 
a 
-1 

After the coefficients {a,)r=l have been determined, the unknown coefficient a0 will 

be determined from (3.2). 

4. Care of the small parameter AT:, *, In this case, neglecting terms on the 

order of (k.L*)4 In k2*, we have in the representation (1.4) 

Then (1. ‘7) goes over into the following: 
i 

- (4.1) 

1 fe’ 

a, = (1 - p,Z)” 

2 (1 - ES) h*G (5, S) - 

where 
Z(1 - E2) h*8 (X - 5) I Cp (S) dS = 

a 1 = -!--!L@!_(kz*)a, 
ctn 1--L 

a2=a,(nC+Ink,*- I) 

Again representing the solution of this equation in the form (2. l), we analogously obtain 
the following infinite system of linear algebraic equations relative to the coefficients 

Co, XL,: 
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) 0, m#l, mf3 

(pm* = 4 (1 - e?) h* (b, i_ qm) - e, 

Here 

i 

+ Ial (In 2--1)+-a,], m=2 
e r?, = 

0, m#3 

I Tn - 
9Gm I(- l)m + I] 

(mS - 9)‘(& _ i)Z ’ mfk m+2, 

I r,+-$, m-3 

(J,(x) is the Bessel function of the first kind). 
Proceeding completely analogously to the previous Sect., we find that the system of 

infinite equations under consideration is completely regular under the condition 

12?L* 
--z- + 4h*kh VB Sill 2/i* 

+r<l 

where 
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am 
r=Fmax InZ+$-11nk,*--xC]+~;~} 

(1 
When the strip becomes a stamp, i. e. for E, = 00, the corresponding infinite system 

of linear equations becomes o. 

bsj -+ -$z J&i, sibsi = bsesj, i = i, 2,. . , (4.3) 
t=1 

and the solution of the truncated system with an arbitrary number of u~now~s iv is de- 

termined by the formula 

Here 
bu = Btie2bo, i=f,2,. . . ,,N 

B21v = - ‘$I 2Na B2N_2, K;, o = 1 
2N, 2N 

[(36’_‘“‘; &‘, . . . , &in-j] - N + n -i-term continued fraction) 

d,,, = _ j+q~U+wWv w+a-*+I) , &-l-n) = _ K$j_n), 2 (_) 

II v;,,,L&-2,2r) 
z=j-?a+1 

q=O,f,..., N__l+n-j; i=t,2 ,..., N-1; n=O,f,...,i--1 

b. = -_?!.m 
MOPL. (M - mass of the stamp) 

L== s [ 5 K(7*g)ds+e2i: B,j ‘s K(k,*,s--s,) ;k& ds] x 
-1 -1 j=l -1 

Therefore, the solution of the problem posed in the case of a stamp will again reduce 

to the solution of the infinite system of equations (4.3) under the assumption made. 
However, in contrast to the case of a strip, the solution of the corresponding truncated 
system of equations with the arbitrary number of unknowns is successfully constructed in 

closed form. Moreover, this result holds even when any finite number of terms in even 
powers of k,*z is retained in the representations (1.4). 

Let us note that for simplicity of the calculations, only terms of the order of (k,*) a 

were retained in (1.4) although the proposed procedure for solving the integral equation 

(1.7) is applicable even when any finite number of terms in powers of the parameter k,* 

is retained in this representation. In the majority of practical cases [5] 0 < k,* < 0.25, 
and therefore, the approximation (4.1) made ‘deviates slightly from the true value and 
corresponds sufficiently well to reality, 

Let us turn to a description of the numerical results. Since the magnitude of the am- 

plitude of the tangential contact stresses under the strip depends essentially on the value 
of the constant C = C, + ic,, the value of this constant was first calculared on the 
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“Nairi-2” electronic computer by using (1.5). The values of the real and imaginary 
parts of this constant are presented below for different values of the physical parameter 

E which depends, in turn, onthe Poisson’s ratio in the above-mentioned manner: E = 
0.6416, 0.5774, 0; C, = 0.0094, 0.1262, 0.2261; C, = 0.6595, 0.7019, 0.7537. 

Fig, 2 

For subsequent calculations it was assu- 
med that p1 = PZ and kz* = 0.25. Then 

the complete regularity condition for the 
infinite system of equations (4.2) is satisfied 
for the mentioned values of the constant 

C as the parameter k* varies within the 

interval (0, 0.022). The value k* = 0.~2 
was taken for the calculations. Since 

then the relationship 

E, / Ei = 0.0128 (1 + v) 

should hold between the materials of the 

strip and the base for values taken for the 
parameters k,* and k* . Hence, it follows 

that the condition E, > E, must be con- 
served, which indeed agrees with the strip 

model assumed pl]. 
The truncated system of equations with 

ten unknowns, obtained from the infinite 

system (4.2), was then solved for given values of the mentioned parameters and for va- 
lues of the ratio h / a = 0.1 and 0.05. The approximate expression 

iX* (5, s) (It*)3 

I 

zs+(z-s)-I, X<S 

as =- sin%* x XS-(x-_)-I, X>S 

was hence taken for the function a~* (2, S) / 3s . 

The truncated system was preliminarily represented as 

%I + 4 (I y ea) A* 5 K,,,a,, + -$ 5 K:, n% + (4.4) , 
1,=1 n=i 

4 (1 - ~2) h*k* 
n sin Bk* 

m=1,2,... 

If {u:))& and (a$)}%_, are solutions of the system (4.4) for the right sides {fm)$& 

and { cpm]$=, , respectively, then the solution of the initial system (4.2) is expressed by 
the formula 

a, = a, + a&), (1) m=l,2,.. (4. 5) 

Substituting these expressions for the coefficients (a,}$r into (3.2) we find the coeffi- 

cient an. When we know the coefficient a,, the coefficients {a,,,j~+ which are calcul- 
ated from (4.5) will also be known. 
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We evidently have a system of algebraic equations with twenty unknowns in the real 
and imaginary parts of the coefficients {um]~=,, i = 1, 2. These systems were solved 

on the “Nairi-2” electronic computer, 
On the basis of the numerical values of the coefficients mentioned, a graph was con- 

structed on the change in the real and imaginary parts of the function cp (5) I= q1 (2) + 

iq, (5) as a function of the values given above for the geometric and physical constants 
of the strip and the base. 

Let us note that the true distribution law of the tangential contact stresses under a strip 

is given by the formula h*P 
T (X, f) = 7 {ql (.z) sin (fit - qa (x) cos wt] 

Shown in Fig. 2 is the behavior of the change in the functions ql (x) and 92 (x) as a 

function of the Poisson’s ratio 2, and the ratio iz .I a (the solid lines correspond to v = 
0.5, the dashes to v = 0.25). Comparison of these graphs shows that for fixed values of 

v a larger value of these functions corresponds to the small value of the ratio a / h. In 
this connection, let us note that h * = 0.306-i a i h for the values taken for the parame- 

ters k+ and k,*. When A* = 0, we have the case of a stamp, and when h* # 0, we have 

the case of a strip, and a small value of the elastic modulus of the strip material will 
correspond to a large value of this parameter for a fixed thickness h and length 2 a. A 

diminution in the strip elastic modulus can be interpreted as an increase in the parame- 
ter I*. The parameter I* grows with distance from the stamp, and absolute values ofthe 
tangential contact stresses have a tendency to decrease under the effect of the same 

force. As follows from the above, this same tendency is characteristic even for the beha- 
vior of the chage in the amplitude functions q1 (~3 and qs (x). 
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The possibility is shown of applying the method of orthogonal polynomials to 
solve some integral equations of a special kind if the eigenfunctions of the inte- 

gral operator corresponding to the principal (singular) part of the kernel are un- 
known. Use of the classical scheme [l - 31 is impossible in this case. However, 

by using modified Chebyshev polynomials, an integral equation of the form 

k 
(0.1) 

is successfully reduced to an infinite algebraic system of the first kind conveni- 

ent for approximate solution. Here a, k are dimensionless parameters, C, is a 

continuous, even, and symmetric function in 5, z . Plane antisymmetric mixed 
problems of elasticity theory with two contact sections, odd in Z. reduce to equa- 

tions ofthe type( 0.1). The odd function f (z) describes the shape ofthe boundary layer 
onthe contact section k < 1 z 1 < 1 altered under the effect of stamps. 

Considered as an illustration is the problem of impressing two flat stamps into 

a strip. 

1, Representing the function f (z) = f,, (z) -+ p sgn 5, we seek the solution ~(5) 

(1.1) 

(1.9) 

Here ‘p. (E) , the solution of the integral equation (1.2). is given by formulas in [4] in 
whichitisassumedthat x/a = x, E/a = g, b/a= k, a = 1. Wehave 


